Send to

Choose Destination
J Biol Chem. 1999 Sep 10;274(37):26369-77.

Antiproliferative activity of G-rich oligonucleotides correlates with protein binding.

Author information

Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA.


Oligonucleotides have been extensively studied as antisense or antigene agents that can potentially modulate the expression of specific genes. These strategies rely on sequence-specific hybridization of the oligonucleotide to mRNA or genomic DNA. Recently, it has become clear that oligonucleotides often have biological activities that cannot be attributed to their sequence-specific interactions with nucleic acids. Here we describe a series of guanosine-rich phosphodiester oligodeoxynucleotides that strongly inhibit proliferation in a number of human tumor cell lines. The presence of G-quartets in the active oligonucleotides is demonstrated using an UV melting technique. We show that G-rich oligonucleotides bind to a specific cellular protein and that the biological activity of the oligonucleotides correlates with binding to this protein. The G-rich oligonucleotide-binding protein was detected in both nuclear and cytoplasmic extracts and in proteins derived from the plasma membrane of cells. We present strong evidence that this protein is nucleolin, a multifunctional phosphoprotein whose levels are related to the rate of cell proliferation. Our results indicate that binding of G-rich oligonucleotides to nucleolin may be responsible for their non-sequence-specific effects. Furthermore, these oligonucleotides represent a new class of potentially therapeutic agents with a novel mechanism of action.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center