Send to

Choose Destination
Nat Genet. 1999 Sep;23(1):81-5.

Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants.

Author information

Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California 92093, USA.


Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions. In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis. The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology. We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-mediated GCR formation. To further our understanding of GCR formation, we have developed a novel mutator assay in S. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600-5, 000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology-mediated GCRs (RAD50/MRE11/XRS2).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center