Format

Send to

Choose Destination
J Exp Zool. 1999 Oct 1;284(5):485-91.

Elasmobranch color change: A short review and novel data on hormone regulation.

Author information

1
Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil. maviscon@usp.br

Abstract

Skins of Potamotrygon reticulatus are light in color in vitro, exhibiting punctate melanophores. Alpha-Melanocyte stimulating hormone (EC(50) = 4.58 x 10(-9) M) and prolactin (EC(50) = 1.44 x 10(-9) M) darken the skins in a dose-dependent manner. The endothelins ET-1, ET-2 and ET-3, and the purines, ATP, and uracil triphosphate (UTP) were not able to induce either skin lightening or darkening. Forskolin and the calcium ionophore A23187 promoted a dose-dependent darkening response, whereas N(2), 2'-O-dibutyryl guanosine 3'-5'-cyclic monophosphate (db cyclic GMP), phorbol-12-myristate-13-acetate (TPA), and 1-oleoyl-2-acetyl-sn-glycerol (OAG) were ineffective. The maximal response obtained with the calcium ionophore A23187 was only 76% of maximal darkening. These results indicate that the cyclic adenosine 3'-5'-monophosphate (cAMP) pathway is probably involved in the pigment dispersion of P. reticulatus melanophores. Other experiments should be done to further investigate how cytosolic calcium may be physiologically increased, and the existence of a putative cross-talk between calcium and cAMP signals. In conclusion, the only hormones effective on P. reticulatus melanophores were prolactin and alpha-MSH. No aggregating agent has been shown to antagonize these actions. Prolactin effect on elasmobranch melanophores adds a novel physiological role to this ancient hormone. J. Exp. Zool. 284:485-491, 1999.

Supplemental Content

Loading ...
Support Center