Send to

Choose Destination
Learn Mem. 1994 May-Jun;1(1):74-82.

Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization.

Author information

Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York, USA.


To study how the late phase of long-term potentiation (LTP) in hippocampus arises, we examined the resulting LTP for its time course and its dependence on protein synthesis and different second-messenger kinases by applying various conditioning tetani. We find that one high-frequency train (100 Hz) produces a form of LTP that lasts longer than 1 hr but less than 3 hr (the early phase of LTP, or E-LTP). It is blocked by inhibitors of calcium/calmodulin kinase II (Cam kinase II) but is not affected by an inhibitor of cAMP-dependent protein kinase [protein kinase A (PKA) and the protein synthesis inhibitor anisomycin] nor is it occluded by the cAMP activator forskolin. In contrast, when three high-frequency trains are used, the resulting potentiation persists for at least 6-10 hr. The L-LTP induced by three trains differs from the E-LTP in that it requires new protein synthesis, is blocked by an inhibitor of cAMP-dependent protein kinase, and is occluded by forskolin. These results indicate that the two mechanistically distinctive forms of LTP, a transient, early component (E-LTP) and a more enduring form (L-LTP), can be recruited selectively by changing the number of conditioning tetanic trains. Repeated tetani induce a PKA and protein synthesis-dependent late component that adds to the amplitude and duration of the potentiation induced by a single tetanus.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center