Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta. 1999 Jul;209(1):104-11.

Gas-exchange analysis of chloroplastic fructose-1,6-bisphosphatase antisense potatoes at different air humidities and at elevated CO(2).

Author information

  • 1Max-Planck-Institut für Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, D-14476 Golm, Germany.

Abstract

Gas-exchange measurements were performed to analyze the leaf conductances and assimilation rates of potato (Solanum tuberosum L. cv. Desireé) plants expressing an antisense construct against chloroplastic fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in response to increasing photon flux densities, different relative air humidities and elevated CO(2) concentrations. Assimilation rates (A) and transpiration rates (E) were observed during a stepwise increase of photon flux density. These experiments were carried out under atmospheric conditions and in air containing 500 micromol mol(-1) CO(2). In both gas atmospheres, two levels of relative air humidity (60-70% and 70-80%) were applied in different sets of measurements. Intercellular CO(2) concentration, leaf conductance, air-to-leaf vapour pressure deficit, and instantaneous water-use efficiency (A/E) were determined. As expected, assimilation rates of the FBPase antisense plants were significantly reduced as compared to the wild type. Saturation of assimilation rates in transgenic plants occurred at a photon flux density of 200 micromol m(-2) s(-1), whereas saturation in wild type plants was observed at 600 micromol m(-2) s(-1). Elevated ambient CO(2) levels did not effect assimilation rates of transgenic plants. At 70-80% relative humidity and atmospheric CO(2) concentration the FBPase antisense plants had significantly higher leaf conductances than wild-type plants while no difference emerged at 60-70%. These differences in leaf conductance vanished at elevated levels of ambient CO(2). Stomatal response to different relative air humidities was not affected by mesophyll photosynthetic activity. It is suggested that the regulation of stomatal opening upon changes in photon flux density is merely mediated by a signal transmitted from mesophyll cells, whereas the intercellular CO(2) concentration plays a minor role in this kind of stomatal response. The results are discussed with respect to stomatal control by environmental parameters and mesophyll photosynthesis.

PMID:
10467036
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center