Format

Send to

Choose Destination
J Physiol. 1999 Sep 15;519 Pt 3:693-712.

Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport.

Author information

1
Department of Neurology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. kevin.staley@uchsc.edu

Abstract

1. During prolonged activation of dendritic GABAA receptors, the postsynaptic membrane response changes from hyperpolarization to depolarization. One explanation for the change in direction of the response is that opposing HCO3- and Cl- fluxes through the GABAA ionophore diminish the electrochemical gradient driving the hyperpolarizing Cl- flux, so that the depolarizing HCO3- flux dominates. Here we demonstrate that the necessary conditions for this mechanism are present in rat hippocampal CA1 pyramidal cell dendrites. 2. Prolonged GABAA receptor activation in low-HCO3- media decreased the driving force for dendritic but not somatic Cl- currents. Prolonged GABAA receptor activation in low-Cl- media containing physiological HCO3- concentrations did not degrade the driving force for dendritic or somatic HCO3- gradients. 3. Dendritic Cl- transport was measured in three ways: from the rate of recovery of GABAA receptor-mediated currents between paired dendritic GABA applications, from the rate of recovery between paired synaptic GABAA receptor-mediated currents, and from the predicted vs. actual increase in synaptic GABAA receptor-mediated currents at progressively more positive test potentials. These experiments yielded estimates of the maximum transport rate (vmax) for Cl- transport of 5 to 7 mmol l-1 s-1, and indicated that vmax could be exceeded by GABAA receptor-mediated Cl- influx. 4. The affinity of the Cl- transporter was calculated in experiments in which the reversal potential for Cl- (ECl) was measured from the GABAA reversal potential in low-HCO3- media during Cl- loading from the recording electrode solution. The calculated KD was 15 mM. 5. Using a standard model of membrane potential, these conditions are demonstrated to be sufficient to produce the experimentally observed, activity-dependent GABA(A) depolarizing response in pyramidal cell dendrites.

PMID:
10457084
PMCID:
PMC2269533
DOI:
10.1111/j.1469-7793.1999.0693n.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center