Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 1999 Sep;290(3):1409-16.

Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor.

Author information

1
Department of Chemistry, University of Pennsylvania, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Abstract

An increase in arginase activity has been associated with the pathophysiology of a number of conditions, including an impairment in nonadrenergic and noncholinergic (NANC) nerve-mediated relaxation of the gastrointestinal smooth muscle. An arginase inhibitor may rectify this condition. We compared the effects of a newly designed arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH), with the currently available N(omega)-hydroxy-L-arginine (L-HO-Arg), on the NANC nerve-mediated internal anal sphincter (IAS) smooth-muscle relaxation and the arginase activity in the IAS and other tissues. Arginase caused an attenuation of the IAS smooth-muscle relaxations by NANC nerve stimulation that was restored by the arginase inhibitors. L-HO-Arg but not ABH caused dose-dependent and complete reversal of N(omega)-nitro-L-arginine-suppressed IAS relaxation that was similar to that seen with L-arginine. Both ABH and L-HO-Arg caused an augmentation of NANC nerve-mediated relaxation of the IAS. In the IAS, ABH was found to be approximately 250 times more potent than L-HO-Arg in inhibiting the arginase activity. L-HO-Arg was found to be 10 to 18 times more potent in inhibiting the arginase activity in the liver than in nonhepatic tissues. We conclude that arginase plays a significant role in the regulation of nitric oxide synthase-mediated NANC relaxation in the IAS. The advent of new and selective arginase inhibitors may play a significant role in the discrimination of arginase isozymes and have important pathophysiological and therapeutic implications in gastrointestinal motility disorders.

PMID:
10454520
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center