Format

Send to

Choose Destination
Pharmacol Ther. 1999 May-Jun;82(2-3):231-9.

Protein tyrosine kinase inhibitors as novel therapeutic agents.

Author information

1
Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.

Abstract

Protein tyrosine kinases (PTKs) play a key role in normal cell and tissue development. Enhanced PTK activity is intimately correlated with proliferative diseases, such as cancers, leukemias, psoriasis, and restenosis. This realization prompted us to systematically synthesize tyrosine phosphorylation inhibitors (tyrphostins) as potential drugs. Over the years, we have demonstrated the ability to synthesize selective tyrphostins aimed at different receptor, as well as at nonreceptor, tyrosine kinases. Some of these tyrphostins have shown efficacy in vivo as antileukemic agents and antirestenosis agents. AG 490, a Jak-2 inhibitor, is potent against recurrent pre-B acute lymphoblastic leukemia. AG 1295, a selective platelet-derived growth factor receptor kinase inhibitor, inhibits 50% of balloon injury-induced stenosis in the phemoral arteries of pigs. AG 1517 (SU 5271), a potent epiderminal growth factor receptor kinase inhibitor, is currently in clinical trials for psoriasis. Similarly, SU 5416, a potent kinase inhibitor of the vascular endothelial growth factor receptor/kinase domain receptor/Flk-1, is currently in clinical trials as an anticancer agent by virtue of its strong anti-angiogenic activity. These findings demonstrate that the identification of PTKs that play a key role in a defined disease state can lead to a selective drug. Tyrphostins also show efficacy in vivo in inflammatory diseases such as sepsis, cirrhosis, and experimental autoimmune encephalitis.

PMID:
10454200
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center