Send to

Choose Destination
Biosens Bioelectron. 1999 May 31;14(5):457-64.

In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection.

Author information

Department of Radiology, University of Texas Health Science Center at San Antonio 78284-7800, USA.


Systematic evolution of ligands by exponential enrichment (SELEX) was used to select and PCR amplify DNA sequences (aptamers) capable of binding to and detecting nonpathogenic Sterne strain Bacillus anthracis spores. A simplified affinity separation approach was employed, in which autoclaved anthrax spores were used as the separation matrix. An aptamer-magnetic bead-electrochemiluminescence (AM-ECL) sandwich assay scheme was devised for detecting anthrax spores. Using a low SELEX DNA to spore ratio (154 ng DNA/10(6) spores), at least three distinct populations of single-stranded DNA aptamers, having varied affinities for anthrax spores, were noted by the AM-ECL assay. Results reflect detection of spore components with a dynamic range equivalent to < 10- > 6 x 10(6) anthrax spores. In the low DNA to spore ratio experiments, aptamers could be liberated from spore pellets by heating at 96 degrees C for 5 min after each round of SELEX. When a much higher DNA to spore ratio (10,256 ng DNA/10(6) spores) was used for SELEX development, a higher affinity set of aptamers was selected that could not be heat-eluted even at 99 degrees C for 5 min following round four of SELEX. However, high affinity spore surface bound aptamers were detectable via their 5'-biotinylated tails using labeled avidin and could be eluted in deionized water. Aptamers have potential for use as inexpensive, in vitro-generated receptors for biosensors in biological warfare detection and other areas.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center