Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9721-6.

Systematic changes in gene expression patterns following adaptive evolution in yeast.

Author information

  • 1Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA.


Culturing a population of Saccharomyces cerevisiae for many generations under conditions to which it is not optimally adapted selects for fitter genetic variants. This simple experimental design provides a tractable model of adaptive evolution under natural selection. Beginning with a clonal, founding population, independently evolved strains were obtained from three independent cultures after continuous aerobic growth in glucose-limited chemostats for more than 250 generations. DNA microarrays were used to compare genome-wide patterns of gene expression in the evolved strains and the parental strain. Several hundred genes were found to have significantly altered expression in the evolved strains. Many of these genes showed similar alterations in their expression in all three evolved strains. Genes with altered expression in the three evolved strains included genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, and metabolite transport. These results are consistent with physiological observations and indicate that increased fitness is acquired by altering regulation of central metabolism such that less glucose is fermented and more glucose is completely oxidized.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center