Send to

Choose Destination
J Neuropathol Exp Neurol. 1999 Aug;58(8):867-80.

Expression of FMR1, FXR1, and FXR2 genes in human prenatal tissues.

Author information

Département de Psychiatrie, Hôpitaux Universitaires de Genèva, Switzerland.


We analyzed the distribution of FMR1, FXR1, FXR2 mRNA, and FMRP in whole normal human embryos and in the brains of normal and fragile X fetuses. The distributions of mRNA for the 3 genes in normal whole embryos and in the brains of normal male and female carrier fetuses were similar, with large amounts of mRNA in the nervous system and in several non-nervous system tissues. No FMR1 (mRNA and protein) was detected and no evident neuropathologic abnormalities found in the brains of male carrier fetuses, suggesting that the FMR1 product (FMRP) may have no crucial function in early stages of nervous system development. FXR1 and FXR2 mRNA had the same distribution and similar intensity in the brains of normal and pathologic fetuses (female and male carriers). The coexpression in the same tissues of FMR1, FXR1, and FXR2, associated with the normal expression of FXR1 and FXR2 and the absence of obvious neuropathological abnormalities in pathological brains, supports the notion that the FXR1 and FXR2 proteins partially compensate for FMRP function. However, the absence of significant overexpression of FXR1 and FXR2 in pathological brains suggests that these genes do not compensate for the lack of FMR1 expression. Alternatively, FMR1, FXR1, and FXR2 proteins may not have compensatory functions, but instead may regulate functions by hetero or homo oligomerization, as suggested by other studies. Thus, a dominant negative effect of abnormal multimeric protein complexes lacking FMRP (e.g. by modification of FXR1 and FXR2 protein functions) may result in the fragile X syndrome phenotype.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center