Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1999 Aug;82(2):664-75.

Load-independent contributions from motor-unit synchronization to human physiological tremor.

Author information

Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.


This study describes two load-independent rhythmic contributions from motor-unit synchronization to normal physiological tremor, which occur in the frequency ranges 1-12 Hz and 15-30 Hz. In common with previous studies, we use increased inertial loading to identify load-independent components of physiological tremor. The data consist of simultaneous recordings of tremor acceleration from the third finger, a surface electromyogram (EMG), and the discharges of pairs of single motor units from the extensor digitorum communis (EDC) muscle, collected from 13 subjects, and divided into 2 data sets: 106 records with the finger unloaded and 84 records with added mass from 5 to 40 g. Frequency domain analysis of motor-unit data from individual subjects reveals the presence of two distinct frequency bands in motor-unit synchronization, 1-12 Hz and 15-30 Hz. A novel Fourier-based population analysis demonstrates that the same two rhythmic components are present in motor-unit synchronization across both data sets. These frequency components are not related to motor-unit firing rates. The same frequency bands are present in the correlation between motor-unit activity and tremor and between surface EMG activity and tremor, despite a significant alteration in the characteristics of the tremor with increased inertial loading. A multivariate analysis demonstrates conclusively that motor-unit synchronization is the source of these contributions to normal physiological tremor. The population analysis suggests that single motor-unit discharges can predict an average of 10% of the total tremor signal in these two frequency bands. Rectified surface EMG can predict an average of 20% of the tremor; therefore within our population of recordings, the two components of motor-unit synchronization account for an average of 20% of the total tremor signal, in the frequency ranges 1-12 Hz and 15-30 Hz. Our results demonstrate that normal physiological tremor is a complex signal containing information relating to motor-unit synchronization in different frequency bands, and lead to a revised definition of normal physiological tremor during low force postural contractions, which is based on using both the tremor spectra and the correlation between motor-unit activity and tremor to characterize the load-dependent and the load-independent components of tremor. In addition, both physiological tremor and rectified EMG emerge as powerful predictors of the frequency components of motor-unit synchronization.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center