Format

Send to

Choose Destination
Oncogene. 1999 Aug 5;18(31):4450-9.

Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation.

Author information

1
Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.

Abstract

Individuals affected with neurofibromatosis 1 (NF1) harbor increased numbers of GFAP-immunoreactive cerebral astrocytes and develop astrocytomas that can lead to blindness and death. Mice heterozygous for a targeted Nf1 mutation (Nf1+/-) were employed as a model for the human disease to evaluate the hypothesis that reduced NF1 protein (neurofibromin) expression may confer a growth advantage for astrocytes, such that inactivation of only one NF1 allele is sufficient for abnormal astrocyte proliferation. Here, we report that Nf17+/- mice have increased numbers of cerebral astrocytes and increased astrocyte proliferation compared to wild-type littermates. Intriguingly, primary Nf1+/- astrocyte cultures failed to demonstrate a cell-autonomous growth advantage unless they were cocultured with C17 neuronal cells. This C17 neuronal cell-induced Nf1+/- increase in proliferation was blocked by MEK inhibition (PD98059), suggesting a p21-ras-dependent effect. Furthermore, mice heterozygous for a targeted mutation in another GAP molecule, p120-GAP, demonstrated no increases in cerebral astrocyte number. These findings suggest that reduced NF1 expression results in a cell context-dependent increase in astrocyte proliferation that may be sufficient for the development of astrocytic growth abnormalities in patients with NF1.

PMID:
10442636
DOI:
10.1038/sj.onc.1202829
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center