Format

Send to

Choose Destination
Diabetologia. 1999 Jul;42(7):856-64.

Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells.

Author information

1
Department of Nutrition, University of Montreal and the CR-CHUM, Institute of Cancer, Quebec, Canada.

Abstract

AIMS/HYPOTHESIS:

Glucagon-like peptide-1 is a potent glucoincretin hormone and a potentially important drug in the treatment of Type II (non-insulin-dependent) diabetes mellitus. We have investigated whether it acts as a growth factor in beta (INS-1)-cells and have studied the signalling pathways and transcription factors implicated in this process.

METHODS:

Cell proliferation was assessed by tritiated thymidine incorporation measurements. We have examined the action of glucagon-like peptide-1 on the enzymatic activity of phosphatidylinositol 3-kinase. The DNA binding activity of transcription factors was investigated by electrophoretic mobility shift assay. Measurements of mRNA were done using the northern technique.

RESULTS:

Glucagon-like peptide-1 caused an increase in tritiated thymidine incorporation in beta (INS-1)-cells and phosphatidylinositol 3-kinase activity in a dose-dependent manner non-additively with glucose. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 blocked the effects of glucagon-like peptide-1 on DNA synthesis. Transcription factor pancreatic and duodenal homebox gene 1 (PDX-1) DNA binding activity was increased by glucagon-like peptide-1 at 3 or 11 mmol/l glucose and the phosphatidylinositol 3-kinase inhibitor LY294002 suppressed the action of glucagon-like peptide-1 on PDX-1 DNA binding activity. Glucagon-like peptide-1 and glucose alone did not change activating protein-1 DNA binding activity. They synergised, however, to increase the activity of activating protein-1. Glucagon-like peptide-1 also increased the expression of PDX-1, glucose transporter 2, glucokinase and insulin mRNAs. Finally, glucagon-like peptide-1 increased the incorporation of tritiated thymidine in isolated rat islets.

CONCLUSION/INTERPRETATION:

The results suggest that glucagon-like peptide-1 may act as a growth factor for the beta cell by a phosphatidylinositol 3-kinase mediated event. Glucagon-like peptide-1 could also regulate the expression of the insulin gene and genes encoding enzymes implicated in glucose transport and metabolism through the phosphatidylinositol 3-kinase/PDX-1 transduction signalling pathway.

PMID:
10440129
DOI:
10.1007/s001250051238
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center