Format

Send to

Choose Destination
Biochim Biophys Acta. 1999 Aug 5;1428(2-3):241-50.

Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum.

Author information

1
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Abstract

2-Amino-3-carboxy-1,4-naphthoquinone (ACNQ) is a novel growth stimulator for bifidobacteria. The role of ACNQ as a mediator of the electron transfer from NAD(P)H to dioxygen (O(2)) and hydrogen peroxide (H(2)O(2)), proposed in our previous paper, was examined using the cell-free extract and whole cells of Bifidobacterium longum. Continuous monitoring of ACNQ, O(2) and H(2)O(2) by several amperometric techniques has revealed that ACNQ works as a good electron acceptor of NAD(P)H diaphorase and that the reduced form of ACNQ is easily autoxidized and also acts as a better electron donor of NAD(P)H peroxidase than NAD(P)H. The generation of H(2)O(2) by B. longum under aerobic conditions is effectively suppressed in the presence of ACNQ. These ACNQ-mediated reactions would play roles as NAD(P)(+)-regeneration processes. The accumulation of ACNQ in the cytosol has been also suggested. These characteristics of ACNQ seem to be responsible for the growth stimulation of bifidobacteria. Vitamin K(3), which has an extremely low growth-stimulating activity and was used as a reference compound, exhibits much lower activity as an electron transfer mediator. The difference in the activity is discussed in terms of the redox potential and partition property of the quinones.

PMID:
10434042
DOI:
10.1016/s0304-4165(99)00098-7
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center