Send to

Choose Destination
See comment in PubMed Commons below
Front Neuroendocrinol. 1999 Jul;20(3):241-68.

Functional morphology of the suprachiasmatic nucleus.

Author information

Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi, Hirokoji, Kamikyoku, Kyoto, 602-8566, Japan.


In mammals, the biological clock (circadian oscillator) is situated in the suprachiasmatic nucleus (SCN), a small bilaterally paired structure just above the optic chiasm. Circadian rhythms of sleep-wakefulness and hormone release disappear when the SCN is destroyed, and transplantation of fetal or neonatal SCN into an arrhythmic host restores rhythmicity. There are several kinds of peptide-synthesizing neurons in the SCN, with vasoactive intestinal peptide, arginine vasopressin, and somatostatine neurons being most prominent. Those peptides and their mRNA show diurnal rhythmicity and may or may not be affected by light stimuli. Major neuronal inputs from retinal ganglion cells as well as other inputs such as those from the lateral geniculate nucleus and raphe nucleus are very important for entrainment and shift of circadian rhythms. In this review, we describe morphological and functional interactions between neurons and glial elements and their development. We also consider the expression of immediate-early genes in the SCN after light stimulation during subjective night and their role in the mechanism of signal transduction. The reciprocal interaction between the SCN and melatonin, which is synthesized in the pineal body under the influence of polysynaptic inputs from the SCN, is also considered. Finally, morphological and functional characteristics of clock genes, particularly mPers, which are considered to promote circadian rhythm, are reviewed.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center