Send to

Choose Destination
Mol Cell Neurosci. 1999 Jul;14(1):28-40.

p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor.

Author information

School of Biomedical Sciences, University of St. Andrews, Biomedical Science Building, St. Andrews, KY16 9AJ, Scotland.


We have investigated whether the transcription factor NF-kappaB plays a role in regulating neuronal survival by manipulating NF-kappaB activation in the nerve growth factor (NGF)-dependent sensory neurons of the embryonic mouse trigeminal ganglion. Overexpression of either the p65 or the p50 NF-kappaB subunits resulted in NF-kappaB activation and promoted in vitro survival as effectively as NGF. Expression of a superrepressor IkappaB-alpha protein prevented NF-kappaB activation in p65/p50-overexpressing neurons and caused the neurons to die as rapidly as NGF-deprived neurons. NGF treatment also activated NF-kappaB, and preventing this activation with superrepressor IkappaB-alpha reduced the NGF survival response. Antibodies that block binding of NGF to the p75 receptor prevented NGF-induced NF-kappaB activation and reduced the NGF survival response to the same extent as superrepressor IkappaB-alpha. Trigeminal neurons cultured from p65(-/-) embryos showed a reduced survival response to NGF compared with neurons from wild-type embryos and there was increased apoptosis of neurons in the trigeminal ganglia of p65(-/-) embryos in vivo. However, as with p75-deficient sensory neurons, p65-deficient sensory neurons showed a normal survival response to BDNF. These results reveal a role for NF-kappaB in regulating neuronal survival during embryonic development and suggest that in addition to the well-established Trk receptor tyrosine kinase signaling cascade, NGF enhances neuronal survival by signaling via a p75-mediated pathway.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center