Format

Send to

Choose Destination
See comment in PubMed Commons below
Carcinogenesis. 1999 Aug;20(8):1633-6.

Gene expression in human breast epithelial cells exposed to 60 Hz magnetic fields.

Author information

  • 1Experimental Toxicology and Carcinogenesis Division, Microbiology and Immunology Division and Electronics and Electromagnetics Section, IIT Research Institute, Chicago, IL 60616, USA.

Abstract

Epidemiology suggests a possible relationship between exposure to power frequency magnetic fields (EMF) and breast cancer. One mechanism through which EMF could stimulate breast cancer induction is via altered expression of oncogenes and/or tumor suppressor genes that regulate normal and neoplastic growth. To evaluate the hypothesis that EMF action in the breast is mediated by alterations in gene expression, transcript levels of c-myc and a battery of other cancer-associated genes were quantitated in human breast epithelial cells exposed to pure, linearly polarized 60 Hz EMF with low harmonic distortion. HBL-100 cells and normal (non-transformed) human mammary epithelial cells were exposed to EMF flux densities of 0.1, 1.0 and 10.0 Gauss (G) for periods ranging from 20 min to 24 h; concurrent sham controls were exposed to ambient fields (<0.001 G) only. Gene expression was quantitated using ribonuclease protection assays. EMF exposure had no statistically significant effect on basal levels of c-myc transcripts in either human breast cell model, and had no effect on alterations in c-myc expression induced by 12-O-tetradecanoylphorbol-13-acetate. Transcript levels of c-erbB-2, p53, p21, GADD45, bax, bcl-x, mcl-1, and c-fos were also unaffected by EMF exposure. These results suggest that EMF is unlikely to influence breast cancer induction through a mechanism involving altered expression of these genes.

PMID:
10426819
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center