Send to

Choose Destination
Neuroscience. 1999;92(3):807-17.

Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult mice.

Author information

Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland.


We examined the potential for changes in cortical connectivity to accompany long-term plastic changes in functional cortical representations of mystacial vibrissae. Plasticity in the barrel cortex of young adult mice was evoked by vibrissectomy that spared row C of whiskers. We found that 2-deoxyglucose brain mapping causes a progressive expansion of cortical representation of the spared vibrissae. Two months after vibrissectomy, when the width of the cortical map of the spared row of vibrissae doubled, living cortical slices of the barrel cortex were injected with fluorescent dextrans. The injections were centered on spared, deprived and control vibrissal columns. The injections labeled three intracortical projection systems: (i) local connections from one vibrissal column to neighboring columns; (ii) long-range projections running in the septa and walls of the barrels and spanning several barrels; and (iii) very-long-range fibers running horizontally in the lower part of layer V. The local, short-range projection system was analysed following small injections into the centers of columns in layers III and IV. We found that injections into spared barrels labeled axons extending for significantly greater distances in all layers (except layer V), and labeled cell bodies situated significantly further, than after injections into deprived or control barrels. Also, the total axonal density labeled by injections into the spared barrel was higher by 70% than for the deprived or control barrels. Alterations of topographical maps in adult somatosensory cortex may occur immediately after functional denervation, but may also increase with time, as in the case of our experimental situation. Our results indicate that persistent, long-term plastic change can remodel connectivity in the barrel cortex.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center