Send to

Choose Destination
Biochem Biophys Res Commun. 1999 Aug 2;261(2):488-92.

The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium.

Author information

Department of Cell Physiology, Institute of Cellular Signalling, Nijmegen, 6500 HB, The Netherlands.


The recently cloned epithelial Ca(2+) channel, ECaC, which is expressed in the apical membrane of 1,25-dihydroxyvitamin D(3)-responsible epithelia, was characterized in Xenopus laevis oocytes by measuring the Ca(2+)-activated Cl(-) current which is a sensitive read-out of the Ca(2+) influx. ECaC-expressing oocytes responded to a voltage ramp with a maximal inward current of -2.1 +/- 0.3 microA at a holding potential of -99 +/- 1 mV. The inward current decreased progressively at less negative potentials and at +50 mV a small Ca(2+)-induced outward current was observed. The Ca(2+) influx-evoked current at a hyperpolarizing pulse to -100 mV displayed a fast activation followed by a rapid but partial inactivation. Loading of the oocytes with the Ca(2+) chelator BAPTA delayed the activation and blocked the inactivation of ECaC. When a series of brief hyperpolarizing pulses were given a significant decline in the peak response and subsequent plateau phase was observed. In conclusion, the distinct electrophysiological features of ECaC are hyperpolarization-dependent activation, Ca(2+)-dependent regulation of channel conductance and desensitization during repetitive stimulation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center