Send to

Choose Destination
Dev Biol. 1999 Aug 1;212(1):229-42.

Cloning of rat fibrillin-2 cDNA and its role in branching morphogenesis of embryonic lung.

Author information

Department of Pathology, Northwestern University Medical School, Chicago, Illinois, 60611, USA.


Fibrillin-2 is an extracellular matrix protein. It is associated with elastic fibers in several tissues and is believed to serve as a ligand for alphavbeta3 integrin, the latter being a known morphogen. In this study, the role of fibrillin-2 in lung development was investigated. Also, rat fibrillin-2 cDNA was isolated and sequenced and its spatiotemporal expression determined. It had approximately 88% homology with human fibrillin-2 and had Ca(2+) binding epidermal growth factor-like domains, transforming growth factor-beta binding protein motifs, and two RGD binding sites. Northern blot analysis revealed an approximately 10-kb transcript, and fibrillin-2 expression was developmentally regulated, and it paralleled that of tropoelastin. At day 13 of gestation, fibrillin-2 was expressed in the mesenchyme and at the epithelial:mesenchymal interface. From day 13 to 19 of gestation, its expression intensified and was confined around the tracheobronchial airways, while it lessened during the postnatal period. Immunoprecipitation revealed an approximately 350-kDa band by SDS-PAGE. Treatment with fibrillin-2 antisense oligodeoxynucleotide induced dysmorphogenesis of the lung explants. They were smaller and had rudimentary lung bud branches, collapsed conducting airways, and loose expanded mesenchyme. Concomitantly, fibrillin-2 mRNA, antibody reactivity in the explants, and fibrillin-2-specific radioincorporation were reduced. Anti-alphav and -laminin antibody reactivity and their respective incorporated specific radioactivities were unaltered. These data indicate that fibrillin-2 modulates organogenesis of the lung in the context of epithelial:mesenchymal interactions. Conceivably, the collapse of the conducting airways may also be related to the perturbed biology of the fibrillin-2 interacting protein, i.e., elastin, the latter being critical for the normal biophysiology of the lungs.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center