Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Jul 30;274(31):21544-54.

The gene expression of the amiloride-sensitive epithelial sodium channel alpha-subunit is regulated by antagonistic effects between glucocorticoid hormone and ras pathways in salivary epithelial cells.

Author information

  • 1Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, California 90089, USA.


The functional expression of the amiloride-sensitive epithelial sodium channel (ENaC) in select epithelia is critical for maintaining electrolyte and fluid homeostasis. Although ENaC activity is strictly dependent upon its alpha-subunit expression, little is known about the molecular mechanisms by which cells modulate alpha-ENaC gene expression. Previously, we have shown that salivary alpha-ENaC expression is transcriptionally repressed by the activation of Raf/extracellular signal-regulated protein kinase pathway. Here, this work further investigates the molecular mechanism(s) by which alpha-ENaC expression is regulated in salivary epithelial Pa-4 cells. A region located between -1.5 and -1.0 kilobase pairs of the alpha-ENaC 5'-flanking region is demonstrated to be indispensable for the maximal and Ras-repressible reporter expression. Deletional analyses using heterologous promoter constructs reveal that a DNA sequence between -1355 and -1269 base pairs functions as an enhancer conferring the high level of expression on reporter constructs, and this induction effect is inhibited by Ras pathway activation. Mutational analyses indicate that full induction and Ras-mediated repression require a glucocorticoid response element (GRE) located between -1323 and -1309 base pairs. The identified alpha-ENaC GRE encompassing sequence (-1334/-1306) is sufficient to confer glucocorticoid receptor/dexamethasone-dependent and Ras-repressible expression on both heterologous and homologous promoters. This report demon- strates for the first time that the cross-talk between glucocorticoid receptor and Ras/extracellular signal-regulated protein kinase signaling pathways results in an antagonistic effect at the transcriptional level to modulate alpha-ENaC expression through the identified GRE. In summary, this study presents a mechanism by which alpha-ENaC expression is regulated in salivary epithelial cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center