Format

Send to

Choose Destination
J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):227-38.

Recent advances in the development of steroid sulphatase inhibitors.

Author information

1
Endocrinology and Metabolic Medicine, Imperial College School of Medicine, St Mary's Hospital, London, UK.

Abstract

Inhibition of steroid sulphatase is now an important target for the development of new drugs for the treatment of women with endocrine-dependent breast tumours. The first potent sulphatase inhibitor identified, oestrone-3-O-sulphamate (EMATE) proved. unexpectedly, to be oestrogenic. A number of strategies have therefore been adopted to design and synthesize a non-oestrogenic inhibitor. For this, a number of modifications have been made to the A and D rings of the oestrone nucleus. 2 Methoxyoestrone-3-O-sulphamate, while having similar in vitro and in vivo sulphatase inhibitory potency to that of EMATE, was devoid of oestrogenic activity when tested at 2 mg/kg in an ovariectomised rat uterine weight gain assay. 17-Deoxyoestrone-3-O-sulphamate was also a potent steroid sulphatase inhibitor and while it was devoid of oestrogenic activity when tested at 0.1 mg/kg, did stimulate uterine growth at 1.0 mg/kg. As an alternative approach to the use of steroid-based inhibitors a number of single ring, bicyclic non-fused ring, and two fused ring sulphamate analogues were designed, synthesized and tested for their ability to inhibit steroid sulphatase activity. In general, although the single ring and bicyclic non-fused ring sulphamate analogues could inhibit sulphatase activity, they were considerably less potent than EMATE. The mono- and bis-sulphamate derivatives of 5,7-dihydroxyisoflavone were relatively potent, inhibiting in vivo steroid sulphatase activity by 62 and 81% respectively at a single oral dose of 10 mg/kg. A study of the structure-activity relationship of a series of coumarin-based sulphamates has led to the development of a number of potent non-steroidal inhibitors, one of which has a similar potency to that of EMATE. The identification of potent steroid- and non-steroid-based sulphatase inhibitors will enable the therapeutic value of this therapy to be examined in the near future.

PMID:
10418996
DOI:
10.1016/s0960-0760(99)00039-4
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center