Format

Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 1999 Jul;113(1):26-31.

The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease.

Author information

1
Department of Dermatology, Graduate School of Medicine, Kyoto University, Japan.

Abstract

Arsenic is widely distributed in nature in the form of either metalloids or chemical compounds, which cause a variety of pathologic conditions including cutaneous and visceral malignancies. Recently, reactive oxygen species have been hypothesized to be one of the causes of arsenic-induced carcinogenesis. 8-Hydroxy-2'-deoxyguanosine is one of the major reactive oxygen species-induced DNA base-modified products that is widely accepted as a sensitive marker of oxidative DNA damage. We studied the presence of 8-hydroxy-2'-deoxyguanosine by immunohistochemistry using N45.1 monoclonal antibody in 28 cases of arsenic-related skin neoplasms and arsenic keratosis as well as in 11 cases of arsenic-unrelated Bowen's diseases. The frequency of 8-hydroxy-2'-deoxyguanosine positive cases was significantly higher in arsenic-related skin neoplasms (22 of 28; 78%) than in arsenic-unrelated Bowen's disease (one of 11; 9%) (p < 0.001 by chi2 test). 8-Hydroxy-2'-deoxyguanosine was also detected in normal tissue adjacent to the arsenic-related Bowen's disease lesions. Furthermore, arsenic was detected by neutron activation analysis in the deparaffined skin tumor samples of arsenic-related disease (four of five; 80%), whereas arsenic was not detected in control samples. Our results strongly suggest the involvement of reactive oxygen species in arsenic-induced human skin cancer. Key word: neutron activation analysis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center