Format

Send to

Choose Destination
Can J Microbiol. 1999 Mar;45(3):242-9.

Regulation of cellulose-inducible structures of Clostridium cellulovorans.

Author information

1
Department of Biological Sciences, Mississippi State University 39762, USA.

Abstract

Scanning electron microscopy was used to detect ultrastructural protuberances on the cellulolytic anaerobe Clostridium cellulovorans. Numerous ultrastructural protuberances were observed on cellulose-grown cells, but few were detected on glucose-, fructose-, cellobiose-, or carboxymethylcellulose (CMC)-grown cells. Formation of these protuberances was detected within 2 h of incubation in cellulose medium, but 4 h incubation was required before numerous structures were observed on the cells. When a soluble carbohydrate or CMC was mixed with cellulose-grown cells, the ultrastructural protuberances could no longer be detected. In fact, no protuberances were observed within 5 min following the addition of glucose, cellobiose, or methylglucose to cellulose-grown cells. The presence of these protuberances corresponded with the binding of the Bandeiraea simplicifolia BSI-B4 isolectin to the cell. Cellulose-grown cells had a greater level of observable lectin binding than cellobiose-grown cells, and lectin binding was not detected on glucose- or fructose-grown cells. In addition, lectin binding ability was lost by cellulose-grown cells following the addition of glucose, fructose, or methylglucose to the cellulose medium. A cellulose-affinity protein fraction expressing cellulase activity was also detected in cell extracts of cellobiose- or cellulose-grown cultures. However, this protein fraction was not detected in extracts of glucose-grown cultures, and was rapidly lost (within 5 min) following the addition of glucose to cellulose-grown cultures. The ability of C. cellulovorans to adhere to cellulose was also affected by the energy substrate, but not in the same manner as the protuberance formation or the cellulase-containing protein fraction. Rather, cellobiose-, cellulose-, and CMC-grown cultures adhered to cellulose, but this adherence was not affected by addition of glucose to the medium. This is the first report that soluble carbohydrates caused the rapid loss of some cellulose-inducible systems of C. cellulovorans.

PMID:
10408097
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center