Send to

Choose Destination
See comment in PubMed Commons below
Bioelectromagnetics. 1999;20(5):269-76.

Cytoplasmic Ca2+ oscillations in human leukemia T-cells are reduced by 50 Hz magnetic fields.

Author information

  • 1Department of Medical Biophysics, University of Göteborg, Sweden.


The effect of 50 Hz magnetic fields on the cytosolic calcium oscillator in Jurkat E6.1 cells was investigated for field strengths within the range from 0 to 0.40 mT root mean square. The intracellular Ca2+ concentration data were collected for single Jurkat cells that exhibited a sustained spiking for at least 1 h while repeatedly exposing them to an alternating magnetic field in 10-min intervals interposed with nonexposure intervals of the same length. The obtained data were analysed by computing spectral densities of the Ca2+ oscillating patterns for each of these 10-min intervals. For every single-cell experiment the spectra of all exposure as well as nonexposure periods were then averaged separately. A comparison between the resulting averages showed that the total spectral power of the cytosolic Ca2+ oscillator was reduced by exposure of the cells to an alternating magnetic field and that the effect increased in an explicit dose-response manner. The same relationship was observed within the 0-10 mHz (10 x 10(-3) Hz) subinterval of the Ca2+ oscillation spectrum. For subintervals at higher frequencies, the change caused by the exposure to the magnetic field was not significant.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center