Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Jul 16;274(29):20116-22.

Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability, and DNA binding specificity.

Author information

III. Zoologisches Institut-Entwicklungsbiologie, Universität Göttingen, Humboldtallee 34A, D-37073 Göttingen, Germany.


The high mobility group (HMG) 1 and 2 proteins are the most abundant non-histone components of chromosomes. Here, we report that essentially the entire pool of HMG1 proteins in Drosophila embryos and Chironomus cultured cells is phosphorylated at multiple serine residues located within acidic tails of these proteins. The phosphorylation sites match the consensus phosphorylation site of casein kinase II. Electrospray ionization mass spectroscopic analyses revealed that Drosophila HMGD and Chironomus HMG1a and HMG1b are double-phosphorylated and that Drosophila HMGZ is triple-phosphorylated. The importance of this post-translational modification was studied by comparing some properties of the native and in vitro dephosphorylated proteins. It was found that dephosphorylation affects the conformation of the proteins and decreases their conformational and metabolic stability. Moreover, it weakens binding of the proteins to four-way junction DNA by 2 orders of magnitude, whereas the strength of binding to linear DNA remains unchanged. Based on these observations, we propose that the detected phosphorylation is important for the proper function and turnover rates of these proteins. As the occurrence of acidic tails containing canonical casein kinase II phosphorylation sites is common to diverse HMG and other chromosomal proteins, our results are probably of general significance.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center