Format

Send to

Choose Destination
Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90.

Membrane traffic and the cellular uptake of cholera toxin.

Author information

1
Combined Program in Pediatric Gastroenterology, Children's Hospital, Harvard Medical School, Harvard Digestive Diseases Center, Boston, MA, USA. lencer@a1.tch.harvard.edu

Abstract

In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.

PMID:
10395933
DOI:
10.1016/s0167-4889(99)00070-1
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center