Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 1999 Jul 6;100(1):67-74.

Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model.

Author information

Stanford University School of Medicine, Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford, CA, USA.



Chronic graft vascular disease (CGVD) in cardiac allografts has been defined as a slowly evolving vasculopathy unresponsive to conventional immunosuppression. We compared 4 rodent models of CGVD to evaluate the reproducibility of CGVD in heart allografts. Rapamycin (Rapa) and cyclosporine (CSA) were then used to treat CGVD.


Hearts were harvested and placed heterotopically into allogenic recipients. CGVD scores of PVG allografts from ACI recipients treated with CSA on days 1 through 10 were significantly elevated on day 90 (n=16) compared with other models (immunosuppression used): (1) Lewis to F344 recipients (CSA), (2) Brown Norway to Lewis (FK506), and (3) DA to Wistar-Firth (methylprednisolone, azathioprine, CSA). Although delayed (day 60 to 90) CSA treatment had no effect (n=6), delayed Rapa (3 mg. kg-1. d-1 IP) reversed CGVD in PVG grafts (0.22+/-0.19 on day 90, n=6). ACI isografts showed no evidence of CGVD (n=6) at day 90. Immunohistochemistry of PVG grafts revealed perivascular infiltrates consisting of CD4(+) T cells and limited numbers of macrophages persisting up to day 90. Flow cytometry demonstrated increased levels of anti-donor antibody at day 90, which was significantly inhibited by Rapa treatment.


PVG grafts developed a significant increase in CGVD without evidence of ongoing myocardial rejection. This CGVD appeared to be mediated by both cellular and humoral mechanisms, given CD4(+) perivascular infiltrates and increased levels of anti-donor antibody. The anti-CGVD effectiveness of Rapa during a period in which there was little myocardial cellular infiltrate supports a novel mechanism of effect such as smooth muscle or B-cell inhibition.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center