Send to

Choose Destination
Neuroscience. 1999;91(4):1321-30.

Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-D-aspartate receptors in the rat hippocampus.

Author information

Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine.


Properties of excitatory postsynaptic currents during increased glutamate release were investigated by means of a whole-cell voltage-clamp in CA1 pyramidal neurons of rat hippocampal slices. Enhancement of transmitter release by 50 microM 4-aminopyridine or by elevated extracellular Ca2+ (up to 5 mM) resulted in a substantial increase in the peak excitatory postsynaptic current amplitude and in the significant stimulus-dependent prolongation of the excitatory postsynaptic current decay. The stronger the stimulus, the slower the excitatory postsynaptic current decay became. The pharmacologically isolated N-methyl-D-aspartate, but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid component of the excitatory postsynaptic current exhibited this phenomenon. The possible connection of such behaviour of the N-methyl-D-aspartate component to the loss of voltage control was tested in the following way: the peak of the N-methyl-D-aspartate component was enhanced under 50 microM 4-aminopyridine and then returned back to the control level by a low dose of D-2-amino-5-phosphonopentanoic acid. However, the decay of the decreased N-methyl-D-aspartate component remained slow suggesting another origin of the stimulus-dependent kinetics. Dihydrokainate, a non-competitive inhibitor of glutamate uptake, did not influence the kinetics of the N-methyl-D-aspartate component in control but induced its dramatic stimulus-dependent prolongation when applied on the background of a low dose of 4-aminopyridine (10 microM) which did not affect the decay by itself. We propose that the delayed stimulus-dependent kinetics of the N-methyl-D-aspartate component is due to the saturation of uptake mechanisms and subsequent activation of extrasynaptic N-methyl-D-aspartate receptors. Our present observations therefore support the hypothesis that N-methyl-D-aspartate receptors may play a role in the cross-talk between synapses by means of the transmitter spillover.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center