Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 1999 Jul 10;250(1):223-30.

Increased phosphorylation of eukaryotic initiation factor 2alpha at the G2/M boundary in human osteosarcoma cells correlates with deglycosylation of p67 and a decreased rate of protein synthesis.

Author information

  • 1Department of Chemistry, University of Nebraska at Lincoln, Lincoln, Nebraska, 68588, USA.


The rate of protein synthesis in higher eukaryotes is largely regulated at the level of eIF2alpha phosphorylation by its kinases. A cellular glycoprotein, p67, protects eIF2alpha from phosphorylation. An enzyme, p67-deglycosylase, when active, removes the carbohydrate moieties from p67 and inactivates it. Subsequently, protein synthesis is inhibited. During mitosis the overall rate of protein synthesis sharply declines. To understand the molecular mechanism underlying this inhibition of protein synthesis, we have examined the phosphorylation of eIF2alpha and the activity of p67. We find that the phosphorylation of eIF2alpha increases at the G2/M border of cycling U2-OS cells, and p67 is deglycosylated at the same period of the cell cycle. In addition, the level and the activity of p67-deglycosylase also increase at the G2/M boundary of cycling U2-OS cells. These results thus provide an important in vivo correlation between the increased phosphorylation of eIF2alpha and deglycosylation of p67 by p67-deglycosylase at the G2/M boundary of cycling U2-OS cells. This may explain in part the inhibition of protein synthesis in U2-OS cells approaching mitosis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center