Send to

Choose Destination
See comment in PubMed Commons below
Respir Physiol. 1999 Apr 1;115(2):249-60.

Regulation of gene expression and secretory functions in oxygen-sensing pheochromocytoma cells.

Author information

Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, OH 45267-0576, USA.


The cellular response to hypoxia is complex. Specialized oxygen chemosensitive cells that are excitable respond to reduced O2 by membrane depolarization, altered gene expression, and neurotransmitter secretion. We have used the O2-sensitive pheochromocytoma (PC12) cell line to investigate the cellular response to hypoxia. Here, we present evidence that membrane depolarization and increased intracellular free Ca2+ are major regulatory events in these cells. Membrane depolarization is mediated by the inhibition of a slow-inactivating voltage-dependent potassium (K) channel. Evidence from molecular biology and patch-clamp studies indicate that the O2-sensitive K channel is a member of the Kv1 family. We also reviewed findings on the regulation of gene expression in PC12 cells during hypoxia. An increase in intracellular free Ca2+ is required for hypoxia-induced transcription of a number of genes including tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamine neurotransmitters, and several of the immediate early genes. We also reviewed the role of dopamine (DA) and adenosine (ADO) receptors in regulation of membrane depolarization and gene expression.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center