Send to

Choose Destination
Mol Microbiol. 1999 Jun;32(6):1140-52.

Genetic redundancy and gene fusion in the genome of the Baker's yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway.

Author information

Unité de Génétique Moléculaire des Levures (URA 1300 CNRS, UFR927 Univ P. and M. Curie), Département des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris CEDEX 15, France.


Redundancy is a salient feature of all living organisms' genome. The yeast genome contains a large number of gene families of previously uncharacterized functions that can be used to explore the functional significance of structural redundancy in a systematic manner. In this work, we describe results on a three-member gene family with moderately divergent sequences (YOL055c, YPL258c and YPR121w ). We demonstrate that two members are isofunctional and encode a hydroxymethylpyrimidine phosphate (HMP-P) kinase (EC, an activity required for the final steps of thiamine biosynthesis, whose genes were not previously known in yeast. In addition, we show that the three genes are each composed of two distinct domains, each corresponding to individual genes in prokaryotes, suggesting gene fusion during evolution. The function of the carboxy-terminal part of the proteins is not yet understood, but it is not required for HMP-P kinase activity. Expression of all three genes is regulated in the same way. Several other examples of gene fusions exist in the same biosynthetic pathway when eukaryotic genes are compared with prokaryotic ones.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center