Format

Send to

Choose Destination
FEBS Lett. 1999 Jun 4;452(1-2):71-6.

Editing of messenger RNA precursors and of tRNAs by adenosine to inosine conversion.

Author information

1
Biozentrum, University of Basel, Switzerland. keller2@ubaclu.unibas.ch

Abstract

The double-stranded RNA-specific adenosine deaminases ADAR1 and ADAR2 convert adenosine (A) residues to inosine (I) in messenger RNA precursors (pre-mRNA). Their main physiological substrates are pre-mRNAs encoding subunits of ionotropic glutamate receptors or serotonin receptors in the brain. ADAR1 and ADAR2 have similar sequence features, including double-stranded RNA binding domains (dsRBDs) and a deaminase domain. The tRNA-specific adenosine deaminases Tad1p and Tad2p/Tad3p modify A 37 in tRNA-Ala1 of eukaryotes and the first nucleotide of the anticodon (A 34) of several bacterial and eukaryotic tRNAs, respectively. Tad1p is related to ADAR1 and ADAR2 throughout its sequence but lacks dsRBDs. Tad1p could be the ancestor of ADAR1 and ADAR2. The deaminase domains of ADAR1, ADAR2 and Tad1p are very similar and resemble the active site domains of cytosine/cytidine deaminases.

PMID:
10376681
DOI:
10.1016/s0014-5793(99)00590-6
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center