Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1999 Jun 18;289(4):691-9.

Polyanionic inhibitors of phosphoglycerate mutase: combined structural and biochemical analysis.

Author information

School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, England.


The effects that the inhibitors inositol hexakisphosphate and benzene tri-, tetra- and hexacarboxylates have on the phosphoglycerate mutases from Saccharomyces cerevisiae and Schizosaccharomyces pombe have been determined. Their Kivalues have been calculated, and the ability of the inhibitors to protect the enzymes against limited proteolysis investigated. These biochemical data have been placed in a structural context by the solution of the crystal structures of S. cerevisiae phosphoglycerate mutase soaked with inositol hexakisphosphate or benzene hexacarboxylate. These large polyanionic compounds bind to the enzyme so as to block the entrance to the active-site cleft. They form multiple interactions with the enzyme, consistent with their low Kivalues, and afford good protection against limited proteolysis of the C-terminal region by thermolysin. The inositol compound is more efficacious because of its greater number of negative charges. The S. pombe phosphoglycerate mutase that is inherently lacking a comparable C-terminal region has higher Kivalues for the compounds tested. Moreover, the S. pombe enzyme is less sensititive to proteolysis, and the presence or absence of the inhibitor molecules has little effect on susceptibility to proteolysis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center