Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 1999 Jun 1;59(11):2747-53.

Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma.

Author information

1
Immunology and Oncology Unit, Department of Surgical Sciences, Newcastle, NSW, Australia.

Abstract

Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis. In previous studies, we have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis. We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Four of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors. (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-R1 and more so for the TRAIL decoy receptors TRAIL-R3 and -R4. Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-R1 and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-R1 and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.

PMID:
10364001
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center