Format

Send to

Choose Destination
Mol Cell Neurosci. 1999 May;13(5):362-78.

Distinct neurite outgrowth signaling pathways converge on ERK activation.

Author information

1
Department of Molecular & Cell. Pharmacology, R-189, Neuroscience Program, University of Miami School of Medicine, 1600 NW 10 Avenue, Miami, Florida, 33136, USA.

Abstract

Several distinct classes of proteins positively regulate axonal growth; some of these are known to activate the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling cascade, at least in nonneuronal cells. We have found that N-cadherin, as well as laminin (LN) and basic fibroblast growth factor (bFGF), can activate ERK in embryonic chick retinal neurons. Additionally, adhesion of retinal neurons to LN or N-cadherin substrates induced a redistribution of ERK from the cytoplasm toward the plasma membrane. Neurite outgrowth induced by bFGF, LN, or N-cadherin was strongly inhibited by treatment with inhibitors of ERK kinase activation, but not by an inhibitor of p38 MAPK. We conclude (1) that N-cadherin and LN can activate ERK in retinal neurons and (2) that activation of ERK is required for full neurite outgrowth induced by these proteins. Our results suggest that ERK activation is one point of convergence for signaling pathways generated by a variety of axon growth inducers.

PMID:
10356298
DOI:
10.1006/mcne.1999.0753
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center