Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1999 Jun;65(6):2691-6.

Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor.

Author information

1
School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. jrlloyd@microbio.umass.edu

Abstract

Resting cells of Desulfovibrio desulfuricans coupled the oxidation of a range of electron donors to Tc(VII) reduction. The reduced technetium was precipitated as an insoluble low-valence oxide. The optimum electron donor for the biotransformation was hydrogen, although rapid rates of reduction were also supported when formate or pyruvate was supplied to the cells. Technetium reduction was less efficient when the growth substrates lactate and ethanol were supplied as electron donors, while glycerol, succinate, acetate, and methanol supported negligible reduction. Enzyme activity was stable for several weeks and was insensitive to oxygen. Transmission electron microscopy showed that the radionuclide was precipitated at the periphery of the cell. Cells poisoned with Cu(II), which is selective for periplasmic but not cytoplasmic hydrogenases, were unable to reduce Tc(VII), a result consistent with the involvement of a periplasmic hydrogenase in Tc(VII) reduction. Resting cells, immobilized in a flowthrough membrane bioreactor and supplied with Tc(VII)-supplemented solution, accumulated substantial quantities of the radionuclide when formate was supplied as the electron donor, indicating the potential of this organism as a biocatalyst to treat Tc-contaminated wastewaters.

PMID:
10347062
PMCID:
PMC91397
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center