Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 1999;90(4):1255-63.

The beta2-adrenoceptor agonist clenbuterol modulates Bcl-2, Bcl-xl and Bax protein expression following transient forebrain ischemia.

Author information

1
Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie und Lebensmittelchemie, Philipps-Universität, Marburg, Germany.

Abstract

It is well known that proteins encoded by the Bcl-2 gene family play a major role in the regulation of apoptosis. We have demonstrated previously that neuronal apoptosis can be induced in the hippocampus and striatum after global ischemia. Clenbuterol, a beta2-adrenoceptor agonist, showed considerable activity against neuronal apoptosis. In the present study, we attempted to find out whether the members of the Bcl-2 family are induced after ischemia, and whether expression of these genes could be altered by clenbuterol. Transient forebrain ischemia was performed in male Wistar rats by clamping both common carotid arteries and reducing the blood pressure to 40 mmHg for 10 min. Clenbuterol (0.5 mg/kg, i.p.) or vehicle were injected 3 h before onset of ischemia or in non-ischemic rats. The hippocampus and striatum were taken from non-ischemic rats 3, 6 and 24 h after injection of clenbuterol, as well as from drug-treated and untreated rats 6 and 24 h after ischemia. Eighty micrograms/lane total protein were loaded on a 15% sodium dodecyl sulfate-polyacrylamide gel for western blotting. Bcl-2, Bax and Bcl-xl proteins were detectable in the non-ischemic hippocampus and the striatum. Clenbuterol up-regulated the expression of Bcl-2 protein at 3, 6 and 24 h after administration. Enhanced Bcl-xl signals were found in the non-ischemic striatum 3, 6 and 24 h after clenbuterol treatment, but no change of Bcl-xl expression by clenbuterol was seen in the non-ischemic hippocampus. Bax expression was not altered by clenbuterol in the non-ischemic hippocampus and striatum. Bcl-2 was up-regulated in both detected regions at 24 h after ischemia, while the increase in Bax and Bcl-xl protein expression had appeared already at 6 h and also 24 h after ischemia. Clenbuterol further increased the expression of Bcl-2 at 6 and 24 h after ischemia. In contrast, Bax protein level was down-regulated by clenbuterol at 6 and 24 h after ischemia. Clenbuterol also increased Bcl-xl level in the ischemic striatum. The results suggest that global ischemia induces proto-oncogenes which are associated with apoptosis. Clenbuterol not only increased Bcl-2 expression in the non-ischemic hippocampus and striatum, but also up-regulated Bcl-2 and down-regulated Bax expression in the ischemic hippocampus and striatum. The increase in the ratio of Bcl-2 and Bax may contribute to the anti-apoptotic effect of clenbuterol. The present study indicates that pharmacological modulation of Bcl-2 family member expression could become a new strategy to interfere with neuronal damage.

PMID:
10338295
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center