Send to

Choose Destination
Diabetes. 1999 Feb;48(2):358-64.

Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans.

Author information

Department of Internal Medicine III, Institute for Medical Physics, University of Vienna Medical School, Austria.


The initial effects of free fatty acids (FFAs) on glucose transport/phosphorylation were studied in seven healthy men in the presence of elevated (1.44 +/- 0.16 mmol/l), basal (0.35 +/- 0.06 mmol/l), and low (<0.01 mmol/l; control) plasma FFA concentrations (P < 0.05 between all groups) during euglycemic-hyperinsulinemic clamps. Concentrations of glucose-6-phosphate (G-6-P), inorganic phosphate (Pi), phosphocreatine, ADP, and pH in calf muscle were measured every 3.2 min for 180 min by using 31P nuclear magnetic resonance spectroscopy. Rates of whole-body glucose uptake increased similarly until 140 min but thereafter declined by approximately 20% in the presence of basal and high FFAs (42.8 +/- 3.6 and 41.6 +/- 3.3 vs. control: 52.7 +/- 3.3 micromol x kg(-1) x min(-1), P < 0.05). The rise of intramuscular G-6-P concentrations was already blunted at 45 min of high FFA exposure (184 +/- 17 vs. control: 238 +/- 17 micromol/l, P = 0.008). At 180 min, G-6-P was lower in the presence of both high and basal FFAs (197 +/- 21 and 213 +/- 18 vs. control: 286 +/- 19 micromol/l, P < 0.05). Intramuscular pH decreased by -0.013 +/- 0.001 (P < 0.005) during control but increased by +0.008 +/- 0.002 (P < 0.05) during high FFA exposure, while Pi rose by approximately 0.39 mmol/l (P < 0.005) within 70 min and then slowly decreased in all studies. In conclusion, the lack of an initial peak and the early decline of muscle G-6-P concentrations suggest that even at physiological concentrations, FFAs primarily inhibit glucose transport/phosphorylation, preceding the reduction of whole-body glucose disposal by up to 120 min in humans.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center