Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 May 21;274(21):14963-71.

Two amino acids within the alpha4 helix of Galphai1 mediate coupling with 5-hydroxytryptamine1B receptors.

Author information

Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA.


We previously reported that residues 299-318 in Galphai1 participate in the selective interaction between Galphai1 and the 5-hydroxytryptamine1B (5-HT1B) receptor (Bae, H., Anderson, K., Flood, L. A., Skiba, N. P., Hamm, H. E., and Graber, S. G. (1997) J. Biol. Chem. 272, 32071-32077). The present study more precisely defines which residues within this domain are critical for 5-HT1B receptor-mediated G protein activation. A series of Galphai1/Galphat chimeras and point mutations were reconstituted with Gbetagamma and Sf9 cell membranes containing the 5-HT1B receptor. Functional coupling to 5-HT1B receptors was assessed by 1) [35S]GTPgammaS binding and 2) agonist affinity shift assays. Replacement of the alpha4 helix of Galphai1 (residues 299-308) with the corresponding sequence from Galphat produced a chimera (Chi22) that only weakly coupled to the 5-HT1B receptor. In contrast, substitution of residues within the alpha4-beta6 loop region of Galphai1 (residues 309-318) with the corresponding sequence in Galphat either permitted full 5-HT1B receptor coupling to the chimera (Chi24) or only minimally reduced coupling to the chimeric protein (Chi25). Two mutations within the alpha4 helix of Galphai1 (Q304K and E308L) reduced agonist-stimulated [35S]GTPgammaS binding, and the effects of these mutations were additive. The opposite substitutions within Chi22 (K300Q and L304E) restored 5-HT1B receptor coupling, and again the effects of the two mutations were additive. Mutations of other residues within the alpha4 helix of Galphai1 had minimal to no effect on 5-HT1B coupling behavior. These data provide evidence that alpha4 helix residues in Galphai participate in directing specific receptor interactions and suggest that Gln304 and Glu308 of Galphai1 act in concert to mediate the ability of the 5-HT1B receptor to couple specifically to inhibitory G proteins.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center