Send to

Choose Destination
Chem Res Toxicol. 1999 May;12(5):442-9.

Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants.

Author information

Unidad Asociada Enzimología and Departamento de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11800 Montevideo, Uruguay.


Three isomers of manganese(III) 5,10,15, 20-tetrakis(N-methylpyridyl)porphyrin (MnTMPyP) were evaluated for their reaction with peroxynitrite. The Mn(III) complexes reacted with peroxynitrite anion with rate constants of 1.85 x 10(7), 3.82 x 10(6), and 4.33 x 10(6) M(-1) s(-1) at 37 degrees C for MnTM-2-PyP, MnTM-3-PyP, and MnTM-4-PyP, respectively, to yield the corresponding oxo-Mn(IV) complexes. Throughout the pH range from 5 to 8.5, MnTM-2-PyP reacted 5-fold faster than the other two isomers. The oxo-Mn(IV) complexes could in turn be reduced by glutathione, ascorbate, urate, or oxidize tyrosine. The rate constants for the reduction of the oxo-Mn(IV) complexes ranged from >10(7) M(-1) s(-1) for ascorbate to 10(3)-10(4) M(-1) s(-1) for tyrosine and glutathione. Cyclic voltammetry experiments show that there is no significant difference in the E1/2 of the Mn(IV)/Mn(III) couple; thus, the differential reactivity of the three isomeric complexes is interpreted in terms of electrostatic and steric effects. Micromolar concentrations of MnTM-2-PyP compete well with millimolar CO2 at reacting with ONOO-, and it can even scavenge a fraction of the ONOOCO2- that is formed. By being rapidly oxidized by ONOO- and ONOOCO2- and reduced by antioxidants such as ascorbate, urate, and glutathione, these manganese porphyrins, and especially MnTM-2-PyP, can redirect the oxidative potential of peroxynitrite toward natural antioxidants, thus protecting more critical targets such as proteins and nucleic acids.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center