Send to

Choose Destination
Oncogene. 1999 Apr 1;18(13):2261-71.

The ATM protein is required for sustained activation of NF-kappaB following DNA damage.

Author information

Laboratory of Fundamental Virology and Immunology, University of Li├Ęge, CHU, Belgium.


Cells lacking an intact ATM gene are hypersensitive to ionizing radiation and show multiple defects in the cell cycle-coupled checkpoints. DNA damage usually triggers cell cycle arrest through, among other things, the activation of p53. Another DNA-damage responsive factor is NF-kappaB. It is activated by various stress situations, including oxidative stress, and by DNA-damaging compounds such as topoisomerase poisons. We found that cells from Ataxia Telangiectasia patients exhibit a defect in NF-kappaB activation in response to treatment with camptothecin, a topoisomerase I poison. In AT cells, this activation is shortened or suppressed, compared to that observed in normal cells. Ectopic expression of the ATM protein in AT cells increases the activation of NF-kappaB in response to camptothecin. MO59J glioblastoma cells that do not express the DNA-PK catalytic subunit respond normally to camptothecin. These results support the hypothesis that NF-kappaB is a DNA damage-responsive transcription factor and that its activation pathway by DNA damage shares some components with the one leading to p53 activation.

[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Publication type

MeSH terms


Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center