Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1999 May;81(5):2088-94.

Differential modulation by copper and zinc of P2X2 and P2X4 receptor function.

Author information

Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-8115, USA.


Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations of ATP. The Cu2+ and Zn2+ concentrations that produced 50% of maximal potentiation (EC50) of current activated by 50 microM ATP were 16.3 +/- 0.9 (SE) microM and 19.6 +/- 1.5 microM, respectively. Cu2+ and Zn2+ potentiation of ATP-activated current was independent of membrane potential between -80 and +20 mV and did not involve a shift in the reversal potential of the current. Like Zn2+, Cu2+ increased the apparent affinity of the receptor for ATP, as evidenced by a parallel shift of the ATP concentration-response curve to the left. However, Cu2+ did not enhance ATP-activated current in the presence of a maximally effective concentration of Zn2+, suggesting a common site or mechanism of action of Cu2+ and Zn2+ on P2X2 receptors. For the P2X4 receptor, Zn2+, from 0.5 to 20 microM enhanced current activated by 5 microM ATP with an EC50 value of 2.4 +/- 0.2 microM. Zn2+ shifted the ATP concentration-response curve to the left in a parallel manner, and potentiation by Zn2+ was voltage independent. By contrast, Cu2+ in a similar concentration range did not affect ATP-activated current in oocytes expressing P2X4 receptors, and Cu2+ did not alter the potentiation of ATP-activated current produced by Zn2+. The results suggest that Cu2+ and Zn2+ differentially modulate the function of P2X2 and P2X4 receptors, perhaps because of differences in a shared site of action on both subunits or the absence of a site for Cu2+ action on the P2X4 receptor.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center