Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1999 May;81(5):2088-94.

Differential modulation by copper and zinc of P2X2 and P2X4 receptor function.

Author information

1
Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-8115, USA.

Abstract

Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations of ATP. The Cu2+ and Zn2+ concentrations that produced 50% of maximal potentiation (EC50) of current activated by 50 microM ATP were 16.3 +/- 0.9 (SE) microM and 19.6 +/- 1.5 microM, respectively. Cu2+ and Zn2+ potentiation of ATP-activated current was independent of membrane potential between -80 and +20 mV and did not involve a shift in the reversal potential of the current. Like Zn2+, Cu2+ increased the apparent affinity of the receptor for ATP, as evidenced by a parallel shift of the ATP concentration-response curve to the left. However, Cu2+ did not enhance ATP-activated current in the presence of a maximally effective concentration of Zn2+, suggesting a common site or mechanism of action of Cu2+ and Zn2+ on P2X2 receptors. For the P2X4 receptor, Zn2+, from 0.5 to 20 microM enhanced current activated by 5 microM ATP with an EC50 value of 2.4 +/- 0.2 microM. Zn2+ shifted the ATP concentration-response curve to the left in a parallel manner, and potentiation by Zn2+ was voltage independent. By contrast, Cu2+ in a similar concentration range did not affect ATP-activated current in oocytes expressing P2X4 receptors, and Cu2+ did not alter the potentiation of ATP-activated current produced by Zn2+. The results suggest that Cu2+ and Zn2+ differentially modulate the function of P2X2 and P2X4 receptors, perhaps because of differences in a shared site of action on both subunits or the absence of a site for Cu2+ action on the P2X4 receptor.

PMID:
10322050
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center