Format

Send to

Choose Destination
Immunotechnology. 1999 Mar;4(3-4):237-52.

An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein.

Author information

1
Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.

Abstract

Using phage-display technology, a novel binding protein (Z-affibody) showing selective binding to the RSV (Long strain) G protein was selected from a combinatorial library of a small alpha-helical protein domain (Z), derived from staphylococcal protein A (SPA). Biopanning of the Z-library against a recombinant fusion protein comprising amino acids 130-230 of the G protein from RSV-subgroup A, resulted in the selection of a Z-affibody (Z(RSV1)) which showed G protein specific binding. Using biosensor technology, the affinity (K(D)) between Z(RSV1) and the recombinant protein was determined to be in the micromolar range (10(-6) M). Interestingly, the Z(RSV1) affibody was demonstrated to also recognize the partially (54%) homologous G protein of RSV subgroup B with similar affinity. Using different recombinant RSV G protein derived fragments, the binding was found to be dependent on the presence of the cysteinyl residues proposed to be involved in the formation of an intramolecular disulfide-constrained loop structure, indicating a conformation-dependent binding. Results from epitope mapping studies, employing a panel of monoclonal antibodies directed to different RSV G protein subfragments, suggest that the Z(RSV1) affibody binding site is located within the region of amino acids 164-186 of the G protein. This region contains a 13 amino acid residue sequence which is totally conserved between subgroups A and B of RSV and extends into the cystein loop region (amino acids 173-186). The potential use of the RSV G protein-specific Z(RSV1) affibody in diagnostic and therapeutic applications is discussed.

PMID:
10231093
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center