Format

Send to

Choose Destination
Cell Motil Cytoskeleton. 1999;42(4):298-314.

Tyrosine phosphorylation/dephosphorylation controls capping of Fcgamma receptor II in U937 cells.

Author information

1
Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland.

Abstract

In the capping of cell-surface receptors two stages can be distinguished: 1) clustering of the receptors (patching) induced by cross-linking with specific antibodies and 2) subsequent assembly of patches into a cap which is driven by the actin-based cytoskeleton. We found that patching of Fcgamma receptor II in U937 cells was correlated with tyrosine phosphorylation of certain proteins, most prominently those of 130, 110, 75 and 28 kDa. The phosphotyrosine-bearing proteins were accumulated at the receptor patches. Formation of the receptor caps was coincident with dephosphorylation of these proteins. Inhibition of protein tyrosine kinases with herbimycin A and genistein attenuated the protein tyrosine hyperphosphorylation and blocked capping in a dose-dependent manner. Phenylarsine oxide and pervanadate, inhibitors of protein tyrosine phosphatases, also suppressed capping of Fcgamma receptor II in a concentration-dependent fashion. Simultaneously, tyrosine hyperphosphorylation of proteins occurred. In the presence of the tyrosine kinase and phosphatase inhibitors the receptors were arrested at the patching stage. In contrast, okadaic acid, a serine/threonine phosphatase blocker, did not affect assembly of the receptor caps. The inhibitory effect of phenylarsine oxide was rapidly reversed by dithiols, 2,3-dimercapto-1-propanoldithiol and dithiotreitol, and was coincident with dephosphorylation of protein tyrosine residues. Extensive washing of pervanadate-exposed cells also resulted in progressive restoration of the cap assembly. Using streptolysin O-permeabilized cells we confirmed regulatory function played by dephosphorylation of tyrosine residues in capping of Fcgamma receptor II. Exogenous phosphatases, applied to permeabilized cells in which activity of endogenous tyrosine phosphatases was blocked, evoked dephosphorylation of protein tyrosine residues that was accompanied by recovery of capping ability in the cells.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center