Format

Send to

Choose Destination
See comment in PubMed Commons below

Enzymology of NAD+ synthesis.

Author information

1
Istituto di Biochimica, Facoltà di Medicina, Università di Ancona, Italy.

Abstract

Beyond its role as an essential coenzyme in numerous oxidoreductase reactions as well as respiration, there is growing recognition that NAD+ fulfills many other vital regulatory functions both as a substrate and as an allosteric effector. This review describes the enzymes involved in pyridine nucleotide metabolism, starting with a detailed consideration of the anaerobic and aerobic pathways leading to quinolinate, a key precursor of NAD+. Conversion of quinolinate and 5'-phosphoribosyl-1'-pyrophosphate to NAD+ and diphosphate by phosphoribosyltransferase is then explored before proceeding to a discussion the molecular and kinetic properties of NMN adenylytransferase. The salient features of NAD+ synthetase as well as NAD+ kinase are likewise presented. The remainder of the review encompasses the metabolic steps devoted to (a) the salvaging of various niacin derivatives, including the roles played by NAD+ and NADH pyrophosphatases, nicotinamide deamidase, and NMN deamidase, and (b) utilization of niacins by nicotinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase.

PMID:
10218108
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center