Send to

Choose Destination
Biochim Biophys Acta. 1999 Apr 19;1427(2):245-55.

Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans.

Author information

Laboratory of Biophysics, Department of Microbiology, College of Natural Sciences, and Research Center for Molecular Microbiology, Seoul National University, Seoul 151-742, South Korea.


Cytosolic copper- and zinc-containing superoxide dismutase was purified 136-fold with an overall yield of 2.5% to apparent electrophoretic homogeneity from the dimorphic pathogenic fungus, Candida albicans. The molecular mass of the native enzyme was 39.4 kDa and the enzyme was composed of two identical subunits with a molecular mass of 19.6 kDa. The enzyme was stable in the range of pH 4.0-9.0 and up to 55 degrees C. The ultraviolet-visible absorption spectrum of the enzyme showed the absorption band of copper- and zinc-containing superoxide dismutase at 660 nm. The atomic absorption analysis revealed that the enzyme contained 0.87 g-atom of copper and 0.79 g-atom of zinc per mole of subunit. The N-terminal amino acid sequence alignments up to the 40th residue showed that copper- and zinc-containing superoxide dismutase from C. albicans has high similarity to other eukaryotic copper- and zinc-containing superoxide dismutases. The sod1 encoding copper- and zinc-containing superoxide dismutase has been cloned using a polymerase chain reaction fragment as a probe. Sequence analysis of the sod1 predicted a copper- and zinc-containing superoxide dismutase that contains 154 amino acids with a molecular mass of 16143 Da and displayed 79%, 69%, and 57% sequence identity to the homologues of Neurospora crassa, Saccharomyces cerevisiae, and bovine, respectively. The cloned sod1 contained an intron of 245 nucleotides, which was verified by reverse transcription-polymerase chain reaction.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center