Format

Send to

Choose Destination
Pharm Res. 1999 Mar;16(3):382-90.

In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery.

Author information

1
Department of Pharmaceutical Research and Development, Genentech Inc., South San Francisco, California, USA.

Abstract

PURPOSE:

Nasal delivery of protein therapeutics can be compromised by the brief residence time at this mucosal surface. Some bioadhesive polymers have been suggested to extend residence time and improve protein uptake across the nasal mucosa. We examined several potential polymer platforms for their in vitro protein release, relative bioadhesive properties and induction of cytokine release from respiratory epithelium.

METHODS:

Starch, alginate, chitosan or Carbopol microparticles, containing the test protein bovine serum albumin (BSA), were prepared by spray-drying and characterized by laser diffraction and scanning electron microscopy. An open-membrane system was used to determine protein release profiles and confluent, polarized Calu-3 cell sheets were used to evaluate relative bioadhesion, enhancement of protein transport and induction of cytokine release in vitro.

RESULTS:

All spray-dried microparticles averaged 2-4 microm in diameter. Loaded BSA was not covalently aggregated or degraded. Starch and alginate microparticles released protein more rapidly but were less adhesive to polarized Calu-3 cells than chitosan and Carbopol microparticles. Protein transport across polarized Calu-3 cells was enhanced from Carbopol gels and chitosan microparticles. A mixture of chitosan microparticles with lysophosphatidylcholine increased protein transport further. Microparticles prepared from either chitosan or starch microparticles, applied apically, induced the basolateral release of IL-6 and IL-8 from polarized Calu-3 cells. Release of other cytokines, such as IL-1beta, TNF-alpha, GM-CSF and TGF-beta, were not affected by an apical exposure to polymer formulations.

CONCLUSIONS:

We have described two systems for the in vitro assessment of potential nasal platforms for protein delivery. Based upon these assessments, Carbopol gels and chitosan microparticles provided the most desirable characteristics for protein therapeutic and protein antigen delivery, respectively, of the formulations examined.

PMID:
10213368
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center