Send to

Choose Destination
J Biol Chem. 1999 Apr 30;274(18):12715-21.

A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes.

Author information

Department of Cell Biology, National Institute for Basic Biology, Graduate University for Advanced Studies, Okazaki 444-8585, Japan.


Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, whereas mammalian peroxisomes can perform beta-oxidation of only those acyl-CoA chains that are larger than octanoyl-CoA (C8). In this report, we have shown that a novel acyl-CoA oxidase can oxidize short-chain acyl-CoA in plant peroxisomes. A peroxisomal short-chain acyl-CoA oxidase from Arabidopsis was purified following the expression of the Arabidopsis cDNA in a baculovirus expression system. The purified enzyme was active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Cell fractionation and immunocytochemical analysis revealed that the short-chain acyl-CoA oxidase is localized in peroxisomes. The expression pattern of the short-chain acyl-CoA oxidase was similar to that of peroxisomal 3-ketoacyl-CoA thiolase, a marker enzyme of fatty acid beta-oxidation, during post-germinative growth. Although the molecular structure and amino acid sequence of the enzyme are similar to those of mammalian mitochondrial acyl-CoA dehydrogenase, the purified enzyme has no activity as acyl-CoA dehydrogenase. These results indicate that the short-chain acyl-CoA oxidases function in fatty acid beta-oxidation in plant peroxisomes, and that by the cooperative action of long- and short-chain acyl-CoA oxidases, plant peroxisomes are capable of performing the complete beta-oxidation of acyl-CoA.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center